This text on contact topology is the first comprehensive introduction to the subject, including recent striking applications in geometric and differential topology: Eliashberg's proof of Cerf's theorem via the classification of tight contact structures on the 3-sphere, and the Kronheimer-Mrowka proof of property P for knots via symplectic fillings of contact 3-manifolds. Starting with the basic differential topology of contact manifolds, all aspects of 3-dimensional contact manifolds are treated in this book. One notable feature is a detailed exposition of Eliashberg's classification of overtwisted contact structures. Later chapters also deal with higher-dimensional contact topology where the focus mainly on contact surgery, but other constructions of contact manifolds are described, such as open books or fibre connected sums.
Featured Series
86 primary booksCambridge Studies in Advanced Mathematics is a 86-book series with 89 primary works first released in 1982 with contributions by Peter T. Johnstone, Jean-Pierre Kahane, and J. Lambek.
Reviews with the most likes.
There are no reviews for this book. Add yours and it'll show up right here!