L-functions associated to automorphic forms encode all classical number theoretic information. They are akin to elementary particles in physics. This 2006 book provides an entirely self-contained introduction to the theory of L-functions in a style accessible to graduate students with a basic knowledge of classical analysis, complex variable theory, and algebra. Also within the volume are many new results not yet found in the literature. The exposition provides complete detailed proofs of results in an easy-to-read format using many examples and without the need to know and remember many complex definitions. The main themes of the book are first worked out for GL(2,R) and GL(3,R), and then for the general case of GL(n,R). In an appendix to the book, a set of Mathematica functions is presented, designed to allow the reader to explore the theory from a computational point of view.
Featured Series
86 primary booksCambridge Studies in Advanced Mathematics is a 86-book series with 89 primary works first released in 1982 with contributions by Peter T. Johnstone, Jean-Pierre Kahane, and J. Lambek.
Reviews with the most likes.
There are no reviews for this book. Add yours and it'll show up right here!