p-adic Differential Equations

p-adic Differential Equations

2010 • 398 pages

"Over the last 50 years the theory of p-adic differential equations has grown into an active area of research in its own right, and has important applications to number theory and to computer science. This book, the first comprehensive and unified introduction to the subject, improves and simplifies existing results as well as including original material. Based on a course given by the author at MIT, this modern treatment is accessible to graduate students and researchers. Exercises are included at the end of each chapter to help the reader review the material, and the author also provides detailed references to the literature to aid further study"--

"Although the very existence of a highly developed theory of p-adic ordinary differential equations is not entirely well known even within number theory, the subject is actually almost 50 years old. Here are circumstances, past and present, in which it arises"--

Become a Librarian

Tags


Series

Featured Series

86 primary books

Cambridge Studies in Advanced Mathematics

Cambridge Studies in Advanced Mathematics is a 86-book series with 89 primary works first released in 1982 with contributions by Peter T. Johnstone, Jean-Pierre Kahane, and J. Lambek.

Stone Spaces
Some Random Series of Functions
Introduction to Higher-Order Categorical Logic
Commutative Ring Theory
Finite Group Theory
Local Representation Theory: Modular Representations as an Introduction to the Local Representation Theory of Finite Groups
An Introduction to the Theory of the Riemann Zeta-Function
Algebraic Homotopy
Introductory Lectures on Siegel Modular Forms
Clifford Algebras and Dirac Operators in Harmonic Analysis
Topics in Metric Fixed Point Theory
Representations and Cohomology: Volume 1, Basic Representation Theory of Finite Groups and Associative Algebras

Reviews

Popular Reviews

Reviews with the most likes.

There are no reviews for this book. Add yours and it'll show up right here!