Problem Solving in Quantum Mechanics: From Basics to Real-World Applications for Materials Scientists, Applied Physicists and Devices Engineers

Problem Solving in Quantum Mechanics

From Basics to Real-World Applications for Materials Scientists, Applied Physicists and Devices Engineers

2017 • 429 pages

This topical and timely textbook is a collection of problems for students, researchers, and practitioners interested in state-of-the-art material and device applications in quantum mechanics. Most problem are relevant either to a new device or a device concept or to current research topics which could spawn new technology. It deals with the practical aspects of the field, presenting a broad range of essential topics currently at the leading edge of technological innovation. Includes discussion on: Properties of Schroedinger Equation Operators Bound States in Nanostructures Current and Energy Flux Densities in Nanostructures Density of States Transfer and Scattering Matrix Formalisms for Modelling Diffusive Quantum Transport Perturbation Theory, Variational Approach and their Applications to Device Problems Electrons in a Magnetic or Electromagnetic Field and Associated Phenomena Time-dependent Perturbation Theory and its Applications Optical Properties of Nanostructures Problems in Quantum Mechanics: For Material Scientists, Applied Physicists and Device Engineers is an ideal companion to engineering, condensed matter physics or materials science curricula. It appeals to future and present engineers, physicists, and materials scientists, as well as professionals in these fields needing more in-depth understanding of nanotechnology and nanoscience.

Become a Librarian

Tags

Genre


Reviews

Popular Reviews

Reviews with the most likes.

There are no reviews for this book. Add yours and it'll show up right here!