89 books in series

Cambridge Studies in Advanced Mathematics

Cambridge Studies in Advanced Mathematics is a 86-book series with 89 primary works first released in 1982 with contributions by Peter T. Johnstone, Jean-Pierre Kahane, J. Lambek, P. J. Scott, H. Matsumura, Michael Aschbacher, J.L. Alperin, S.J. Patterson, Hans Joachim Baues, Helmut Klingen, John E. Gilbert, Margaret A.M. Murray, Kazimierz Goebel, W. A. Kirk, D.J. Benson, C. Allday, Christopher James Allday, Volker Puppe, C. Soulé, Maurice Auslander, Idun Reiten, Sverre O. Smalo, Yves Meyer, Charles A. Weibel, Christian Peskine, Ronald Coifman, Richard P. Stanley, Ian R. Porteous, Michèle Audin, Helmut Volklein, J. Le Potier, Daniel Bump, Gérard Laumon, John McCleary, Paul Taylor, M.P. Brodmann, R.Y. Sharp, R.M. Dudley, A.J. Berrick, M.E. Keating, Haruzo Hida, Rafael José Iorio Jr., Valéria de Magalhães Iorio, Francis Borceux, George Janelidze, Béla Bollobás, T. Sheil-Small, Claire Voisin, Fritz Gesztesy, Helge Holden, Shigeru Mukai, J.J. Duistermaat, J.A.C. Kolk, I. Moerdijk, J. Mrcun, Roger Carter, Isaac Chavel, Dorian Goldfeld, Philippe Gille, Tamás Szamuely, Edward Frenkel, Antonio Ambrosetti, Andrea Malchiodi, E. Brian Davies, Kunihiko Kodaira, Hansjörg Geiges, Jacques Faraut, Alexander Kirillov Jr Jr, Johanna Michor, Gerald Teschl, David Applebaum, Greg W. Anderson, Alice Guionnet, Ofer Zeitouni, Kiran S. Kedlaya, Joseph Hundley, Jouko Väänänen, Gunter Malle, Donna Testerman, Peter Li, Francesco Maggi, Bernard Helffer, Pertti Mattila, Richard Beals, Roderick Wong, V. Jurdjevic, James C. Robinson, José L. Rodrigo, Witold Sadowski, Daniel Huybrechts, Christopher J. Bishop, Yuval Peres, Peter Schneider, J.M. Landsberg, J.S. Milne, John Gough, Tullio Ceccherini-Silberstein, Gabriel Navarro, Philipp Fleig, Henrik P.A. Gustafsson, Axel Kleinschmidt, Daniel Persson, Eric Peterson, Arthur Ogus, Denis-Charles Cisinski, Andrei Agrachev, Davide Barilari, Ugo Boscain, Nikolai Nikolski, Amnon Yekutieli, David Barnes, Constanze Roitzheim, Meinolf Geck, Birgit Richter, Rufus Willett, and Guoliang Yu.

#3
Stone Spaces

1982 • 396 pages

#5
Some Random Series of Functions

1985 • 1 Reader • 324 pages

#8
#10
Finite Group Theory

1986 • 1 Reader • 320 pages

#15
Algebraic Homotopy

1989 • 1 Reader • 488 pages

#33
Lectures on Arakelov Geometry

1992 • 1 Reader • 185 pages

#36
Representation Theory of Artin Algebras

1995 • 1 Reader • 425 pages

#37
#50
#53
#55
Automorphic Forms and Representations

1997 • 1 Reader • 592 pages

#56
Cohomology of Drinfeld Modular Varieties

1997 • 1 Reader • 380 pages

#58
A User's Guide to Spectral Sequences

2000 • 1 Reader • 560 pages

#63
Uniform Central Limit Theorems

1999 • 1 Reader • 450 pages

#69
Modular Forms and Galois Cohomology

2000 • 1 Reader • 343 pages

#72
Galois Theories

2001 • 1 Reader • 356 pages

#73
Random Graphs

1985 • 1 Reader • 498 pages

#75
Complex Polynomials

2002 • 1 Reader • 452 pages

#103
Langlands Correspondence for Loop Groups

2007 • 1 Reader • 379 pages

#106
Linear Operators and their Spectra

2007 • 1 Reader • 464 pages

#107
Complex Analysis

2007 • 1 Reader • 418 pages

#109
An Introduction to Contact Topology

2007 • 1 Reader • 458 pages

#110
Analysis on Lie Groups: An Introduction

2008 • 1 Reader • 318 pages

#116
Levy Processes and Stochastic Calculus

2004 • 1 Reader • 440 pages

#118
An Introduction to Random Matrices

2009 • 1 Reader • 507 pages

#132
Models and Games

2011 • 1 Reader • 380 pages

#134
Geometric Analysis

2012 • 1 Reader • 417 pages

#139
Spectral Theory and Its Applications

2012 • 1 Reader • 250 pages

#150
Fourier Analysis and Hausdorff Dimension

2015 • 1 Reader • 455 pages

#158
Lectures on K3 Surfaces

2016 • 1 Reader • 499 pages

#169
Geometry and Complexity Theory

2017 • 1 Reader • 353 pages

#175
#177
Formal Geometry and Bordism Operations

2018 • 1 Reader • 421 pages

#178
Lectures on Logarithmic Algebraic Geometry

2018 • 1 Reader • 559 pages

#183
Derived Categories

2019 • 1 Reader • 621 pages

#188
From Categories to Homotopy Theory

2020 • 1 Reader • 401 pages

#189
Higher Index Theory

2020 • 1 Reader • 595 pages